Partnership between Concept Laser and RSC Engineering for additive design
Tim Richter, RSC Engineering (CEO) und Frank Herzog, Concept Laser (President & CEO) (left to right): RSC Engineering’s references and expertise will give us a strong foundation for maximizing the potential of Laser CUSING.”
Concept Laser and RSC Engineering GmbH (Cologne, Germany) have announced a strategic partnership for engineering of laser-fused components. Frank Herzog, President & CEO of Concept Laser: “We are pleased to partner with RSC Engineering and Tim Richter. Our users will benefit from our partnership with a design firm that can create process-oriented component designs using LaserCUSING for complex components. RSC Engineering’s list of references and expertise will give us a strong foundation for maximizing the potential of LaserCUSING.”
The new partnership with a highly specialized design firm follows a current market trend: In the past, there was a demand for designs that replaced cast or milled components. Today, more and more designers and engineers are realizing that additive manufacturing can open up entirely new approaches to design. “LaserCUSING-oriented” design is ideal for bionic or lightweight construction approaches that produce components with optimized geometries and new possibilities in areas such as functionality or resilience. RSC Engineering is one of today’s design pioneers that know how to incorporate the benefits of laser-fused metals into the component development process.
Tim Richter, RSC Engineering (CEO): “Lightweight constructions are often used for component structures that cannot be adequately produced with traditional processes, whereas functional integration improves the quality of a component.”
Advantages of LaserCUSING-oriented design
Process-oriented design means leaving behind the traditional approach of substituting a milled or cast component. In an additive design context, the advantages of LaserCUSING can be maximized: optimized design, better performance and increased added value. There are many reasons for this, says Tim Richter: “Additional functions are now possible, such as cooling, production of moving parts in a one-shot process without assemblies, or light weight structures that can withstand heavy stresses. Hybrid manufacturing solutions (combination of conventional processes and Laser CUSING) can bring together the best of both worlds. It’s all about understanding new possibilities and using them in a targeted way. Additive design eliminates the need for substitution and produces completely new solutions.”
Spectrum of additive design
RSC Engineering’s design activities are primarily in the areas of rapid prototyping, rapid tooling and rapid manufacturing. Reference components include solutions for lightweight design and functional integration. “Lightweight constructions are often used for component structures that cannot be adequately produced using traditional processes,” says Tim Richter, “whereas functional integration improves the quality of a component.” These approaches involve a range of strategies that RSC Engineering determines according to the each component requirement: Reduction or avoidance of support geometries, integration of cooling channels, elasticity or increased rigidity through integrated lattice structures. Tim Richter: “We focus on the component’s ultimate function right at the beginning of the design process. ‘Virtual prototyping’ is an important concept. Going from a virtual prototype to the actual product is no longer a big process thanks to LaserCUSING. This means that we can often shorten the development process significantly.”
Tim Richter, RSC Engineering (CEO): “Our product costing analysis for the exhaust gas probe showed that we reduced manufacturing costs by almost 60%.”
Exhaust gas probe with intelligent functional integration
An exhaust gas probe developed by RSC Engineering is an excellent example of intelligent additive design. The probe is used to determine the composition of engine exhaust gases in a test system. The exhaust gas is up to 2100°C and under high pressure. Because of these high temperatures, the exhaust gas probe also features cooling channels for coolant flow, in addition to six pipes for collecting the exhaust gas. Conventional exhaust gas probes are typically welded, which is a time-consuming process. By contrast, the exhaust gas probe by RSC Engineering GmbH was manufactured in one step, including all flow-optimized channels, using LaserCUSING. “Such highly effective functions can be very compactly integrated into an intelligently designed additive component,” says Tim Richter. “But the problem was in the costs. The product costing analysis for the exhaust gas probe showed that we reduced manufacturing costs by almost 60%. This demonstrates the incredible cost-cutting potential of this technology.”
Exhaust gas probe: single-stage production combined with integrated cooling in one extremely compact component
Project phases of LaserCUSING design
The additive design process is based on a coordinated analysis and component design by RSC Engineering. During the first phase of the project, the potential of the component is systematically evaluated. What will it do? What were the advantages and disadvantages of previous solutions? Are there special objectives, such as cost reduction or lightweight construction? In addition to these criteria, the possible advantages of the LaserCUSING process are defined. In the second phase, precise specifications are created. This involves drafting binding functional requirements, determining the timeframe and defining batch sizes.
The third project phase is the actual design process. Tim Richter: “The key words here are design or redesign and simulation.” This involves evaluating and comparing alternative geometries as part of a virtual prototyping process. Physical functions then go through the various levels of simulation using DMU (digital mock-up), FEM (mechanical/thermal simulation) and CFD (thermal simulation). The final conclusions are also examined with respect to the consequences for manufacturing. In the last stage, implementation in the production environment is analyzed as a QA measure.
For more information
Web: www.concept-laser.de